Cholesterol depletion induces large scale domain segregation in living cell membranes.

نویسندگان

  • M Hao
  • S Mukherjee
  • F R Maxfield
چکیده

Local inhomogeneities in lipid composition play a crucial role in regulation of signal transduction and membrane traffic. Nevertheless, most evidence for microdomains in cells remains indirect, and the nature of membrane inhomogeneities has been difficult to characterize. We used lipid analogs and lipid-anchored proteins with varying fluidity preferences to examine the effect of modulating cellular cholesterol on domain formation. We show that lowering cholesterol levels induces formation of visible micrometer-scale domains in the plasma membrane of several mammalian cell types with complementary distributions of fluorescent lipid analogs with preferences for fluid or ordered domains. A uniform distribution is restored by cholesterol repletion. Unexpectedly, cholesterol depletion does not visibly alter the distribution of a crosslinked or uncrosslinked glycosylphosphatidylinositol-anchored protein (the folate receptor). We also examined the effect of varying cholesterol content on the cold Triton X-100 solubility of several membrane constituents. Although a cholesterol analog, dehydroergosterol, and a glycosylphosphatidylinositol-anchored protein are largely retained after extraction, a lipid analog with saturated 16-carbon acyl chains is largely removed when the cellular cholesterol level is lowered. This result indicates that after cholesterol depletion molecules in the more ordered domains can be extracted differentially by cold nonionic detergents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmembrane helices can induce domain formation in crowded model membranes.

We studied compositionally heterogeneous multi-component model membranes comprised of saturated lipids, unsaturated lipids, cholesterol, and α-helical TM protein models using coarse-grained molecular dynamics simulations. Reducing the mismatch between the length of the saturated and unsaturated lipid tails reduced the driving force for segregation into liquid-ordered (l(o)) and liquid-disordere...

متن کامل

Caveolin scaffolding region and cholesterol-rich domains in membranes.

A protein that constitutes a good marker for a type of cholesterol-rich domain in biological membranes is caveolin. A segment of this protein has a sequence that corresponds to a cholesterol recognition/interaction amino acid consensus (CRAC) motif; this motif has been suggested to cause the incorporation of proteins into cholesterol-rich domains. We have studied the interaction of two peptides...

متن کامل

Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells.

Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-...

متن کامل

Cholesterol and nicotinic acetylcholine receptor: An intimate nanometer-scale spatial relationship spanning the billion year time-scale

Once the sterol biosynthetic machinery had progressed over the course of several million years to yield cholesterol, this neutral lipid became an omnipresent and essential component of biomembranes in Eukaryotes. The hopanoids in Prokaryotes and eukaryotic sterols share the ability to provide stability and domain compartmentalization in membranes. Even more important is the intimate association...

متن کامل

Fluorescence correlation spectroscopy relates rafts in model and native membranes.

The lipid raft model has evoked a new perspective on membrane biology. Understanding the structure and dynamics of lipid domains could be a key to many crucial membrane-associated processes in cells. However, one shortcoming in the field is the lack of routinely applicable techniques to measure raft association without perturbation by detergents. We show that both in cell and in domain-exhibiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 23  شماره 

صفحات  -

تاریخ انتشار 2001